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Summary—The equation of elastic vibration of a slender body in a supersonic flow
is derived, damping and axial forces being taken into consideration.

A general solution method is proposed, consisting in reducing the original equation
to a Volterra integral equation applying the method of initial parameters. An approxi-
mate solution method is also given. Results of two computation examples of the flutter
velocity are given.

1. Introduction

THE object of the present paper is to establish linearized equations of
supersonic flow past a deformable slender body with tail and to propose
methods for computing flutter velocity. A preliminary statement of this
problem was given in‘Y. The aerodynamic considerations are based on
the Ref.®).

The equation of lateral vibration of the rocket in supersonic flow ob-
tained here has the character of the equation of lateral vibration of a beam
with variable cross-section, with the co-action of axial forces, internal
damping and aerodynamic forces (described by terms of the type of Corio-
lis forces, centrifugal forces and the associated air mass).

A general method for integrating the equation of the problem is pro-
posed. This consists in applying the method of initial parameters and
reducing the original equation to a Volterra integral equation. Then
the critical parameters are determined. Next, approximate solution methods
are given, as well as examples of determining the critical velocity of flutter.

As a result it is shown that if the rocket is designed as an elastically
deformable body, the flutter phenomenon appears. It is shown in addition
that the flutter velocities lie within the limits of flight velocities for average
rockets.

2. Equation of Vibration of a Slender Body in a Linearized Supersonic Flow

The problem of determining the aerodynamic forces acting on a slender
body in a non-steady state flow was dealt with by many authors. In the
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present paper the relations given by J. W. Miles® are used, he showed
that in the case of a linearized potential flow the transversal force acting
per unit length of the body may be expressed by the equation (Fig. 1)

OF DM
- = 2 2
e O 1)

where p, is the density of the air, U the air velocity and

D 0 i)

Dt ox ot

A

FiG. 1.

For the segment of the rocket without fins
M = zrt(v,+iv,) (2.2)
and for the finned segment

r4 r-i
M== bz—rz—l—?) vy+i:r(b2—r2+ ¥ v, (2.3)
By assuming that the motion takes place in the xy-plane only, we obtain
oF dA ov . ov
—_—= 2y A —+ — 2.4
ox QOUvdx TQOUA(ax +at) ( )
where for the segment without fins
A =ar? (2.5)
for finned segment
4
A= s:(b”—r2+ _,;2_) 2.5")
and
oy ay
) 8 8 2.6
=5t Tox (R

Quantities x and ¢ are dimensionless related to / and //U respectively.
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Substituting (2.6) in (2.4) and returning to quantities with dimensions,
we obtain*

oF %y 0%y , d4 oy dA4 ay
o °U2A &+ 200U4 axor ToAsa teU g telg-5r
@7

The equation of transverse vibration of the rocket has the form

ol 0 . L2 oy oF
0%y [ oxt T c)x%)t] +e*(x )A dF [P( ) ox | ox )
(2.8)
where p*(x) is the density of the rocket, P(x, t) the axial force and # the

damping coefficient or, after substituting (2.7)

0® (. 0% 0%y 249 0 .
W(EJT)F'MG 2at)+gﬂUA ‘l‘ [P( Fe +

oy dA oy d4 oy 0%y
+290UA6 3 +0,U? —— &x B +oU g% dx or +looto*X)] A5 o2 =0. (2.9
with the cross section 4 expressed according to (2.5).

In the following we shall assume that P(x, f) = 0, although there is
no essential difficulty in taking the axial force into consideration.

The boundary conditions are

¥'(0) = y"(0) =y"() =y"'0) (2.10)

The presence of fins or a wing introduces a discontinuity of the rocket
cross-section and its derivative with respect to x which seriously compli-
cates numerical computations in some cases.

In practical computations the fin effect may be expressed in the form

of a force applied at the centre of pressure of tail and expressed by the
equation

B ay 0y oy
Fe= (a)+ (a—) +“3(ar),=,.+

0%y Ry
o (a?a‘z),,=,.+“s (a?azz)m. @10

where
I
o, = —pU ddil dx
I
Ia
ﬂ.g - *‘QoU— Al dx

I

* The same result for the non-finned segment may be obtained by the method
given in Ref. (1).
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ay = —290Uf 4, dx—l—gon——— (xp—x) dx

I

a5 = —0o f Ay (xg—x) dx @.12)
I

4
A, ==x [bQ(x) ré+ - B(x T]_nra =7 [bz(x)ﬁ2r2+ b:—(x)] (2.13)
it being assumed that on the finned segment the radius of the fuselage
is constant (r = const), x, = the coordinate of the centre of pressure
on the fins, /; and [/, = the projection of the force and aft end of the
tail on the x-axis, respectively. Hence, the simplified equation of lateral
vibration takes the form

i 0? a3y 02
—(E ayj F 2a;)+ QUPA 2+

ox? o0x2
0%y dd oy , ., d4 0y
+290UA0 o +o,U? ™ 7+ Qo 77'%‘
+[oy+0 *(t)]A —0(x—x) F;, =0 (2.149)

where A is expressed according to the Eq. (2.5") for the entire length of
the rocket.

3. General Solution of the Problem

Let us consider now the general accurate method for constructing
the solution of the problem just stated. We shall start from the Eq. (2.9)
and then we shall show the application of this method to the solution
of the Eq. (2.14).

The Eq. (2.9) should, in principle, be replaced by two, as the mathe-
matical expression of the coefficients of the equation changes considerably
if we pass to the finned segment. However, from the point of view of
computation it is convenient to replace the coefficients with a single
expression for the entire length of the rocket, by means of approximate
functions.

Then, if the solution of the Eq. (2.9) is assumed in the form

y(x, 1) = €' X (x) (3.1)
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it will become

[ETX" (1 +inw)]”" +(P+o,UA) X'+ (20,UAicr+
+ooUA'+P) X'+ [0,UA"iv—(0p+0* (x)) Aw*] X =0 (3.2)

This equation may be written thus
XVta,(x) X" +a,(x) X" +as(x) X' +a,(x) X =0 (3.3)

where the coefficients ag;(x) will be obtained by confrontation with the
Eq. (3.2).

The solution of the problem will be realized thus. We shall reduce our
equation to a Volterra integral equation of the 2-nd kind. This will be
done in two ways. In the first, general, arbitrary continuous coefficients
a;(x) will be assumed.

In the second the coefficients will be assumed in the form of polynomials
of an arbitrary degree which enables, by applying the Laplace integral
transformation, the obtainment of a particularly simple kernel.

The problem is treated as an initial parameter problem in relation to
x, assuming X, X', X", X', to be known for x = 0. Two of these param-
eters are really known [X"(0) = X""(0) = 0], the other two are not.
Solving the Volterra integral equation by means of the resolving kernel
and arranging the solution in terms of the remaining two constants we
make use for their determination of the remaining two boundary condi-
tions for x = I

Setting equal to zero the determinant of the system of equations for
the two remaining initial parameters we obtain the characteristic equation.

Assuming o in the complex form

o = a+tif (3.4)

we seek for the equation for f =0 and determine, from the principle
of argument the flutter velocity.
With such a statement of the problem the boundary conditions for
x =/ are such
X'O=X"N=0 (3.5)

We proceed now to reduce the Eq. (3.3) to a Volterra integral equation.
Denoting the initial values by

X0) = A
X'(0) =B
X"(0) = X"0)=0 (3.6)

the Eq. (3.3) may be reduced to the following Volterra integral equation
@)+ [ K(x, Hp@)dE = f(x) (3.7)
0
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where
dix
Py p(x) (3.8)
Hence
D'gp =f p(&)dé
(1]
pd L 3
g = [C-D g ea (39)
§ !
therefore
ex _de_ .
dx® Todx®
% = B4+D3p; X=A+B+D%¢ (3.10)

Substituting (3.10) in the Eq. (3.3), use being made of (3.9) and (3.6)
we obtain for the kernel K(x, &) and f(x) the following expressions

o =
K(x, &) = Z () G ); (3.11)
() = (A+B) a3+ Aay (x) (3.12)

The function X(x) will be obtained from (3.10).

The Eq. (3.3) may be reduced to a Volterra equation of a simpler form
if the coefficients of the equation are assumed in the form of polynomials
which is usually done in practice.

If the coefficients a,(x) are assumed in the form of polynomials, the
Eq. (3.3) takes the form

(a0 + kZI a x*) X7V + (By+ .21 Bx®) X'+ (yo+ *21 X)X+
= s =

+ (vo+ Zlv,‘x")X’—i—(yo%— Zlykx*)XZO (3.13)
k= k=

where the constant coefficients are complex, in general. In order to pre-
serve the polynomial form of the coefficients the equation is not divided
by the coefficient of X'V as was done in the former method.
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Applying the Laplace transformation to (3.13) and bearing in mind
that

o B » 4" X(p)
where
Ly} = [ e™y(x)dx (3.15)

the Eq. (3.13) may be reduced (by making use of the initial parameters
(3.6)) to the form

n

_ 2 L
ay(Xp'—p*A—p*B) + (— 1ty g (Xp'—p*A—p*B) +
k=1

+Bo(Xp*—p*A—pB) + ) V(1) ﬁx—“(XP —p*A—pB)+
k—l

k o
+yo(Xp*—pA—B)+ V‘(—Im aF WP —PA—B)+

kx:l

- 3 d-x
Fnp—a+ (—l)’*vkd RO TN, 29 P - o =°
k=

k=1
(3.16)
or, after rearrangement,
d"x dm1X
an dp,, +all 1 dp"_ + +al}X H(p) (3'17)
Hence
H(p) a,(p) 5 a,(p)
= . 5 I X 3.18
o) @) a(P) @.18)

@y, ..., a; are, in general, fourth order polynomials in p depending addi-
tionally of the initial parameters 4, B. Assuming, that a, has single roots,
the free term and the coefficients of the derivatives in (3.18) may be ex-
panded thus

H(p) Y“ kr a;i(p) v
= = » JU+ b
a(p) = p—pr Ca(p) - —Pr

(3.19)
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Since, due the transformation law of a convolution, we have

N ) dff(p)} _ _,{( Ly b )ﬂ@}
L { a(p) dpf L b’°+:‘1 p—r,] dpi

4
= X by, [ EX(EeFD dE+ (= 1YxIX ()b (3.20)

therefore the inverse transform of the Eq. (3.18) can be represented di-
rectly in the form

X (@) = f(x)+ [ K(x, &)X (&) ds 3.21)
0
where
3 ket
fx) = - (3.22)

=  EigP, x—0)
K=Y Nt

i=1i=: 1— 3 (~1)byx

(3.23)

The Eq. (3.21) is the sought for Volterra integral equation of the second
kind, of which the solution has the form

X(x) =f(x)+m§‘1 ] K,y (x, 5)f(s) ds (3.24)
where

K, (x,5) = OflK(x, £ K, (&, 5)dE (3.25)
If

1
|Kx—§)|<M  and [ M|f(s)|ds=x
0

the absolute error of the n-th approximation to the solution (3.24) will
be obtained from the equation

(Mt
e 3, (m—1)1

m=1

ax < (3.26)
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After determination the function X(x) either from (3.1) by means of (3.8)
or from (3.21) by means of (3.24) we must arrange the obtained solution
in relation to 4 and B.

X(x) = AR, (x,U,w)+BR,(x,U,w) (3.27)
Then, using the two remaining boundary conditions (3.5) we obtain the
characteristic determinant of the problem
Ry (LU, w);  Ry(,U,w)

- 28
R GUw); R GUw)| = ° ()

Hence, by the method described above, assuming @ in the form (3.4)
the critical velocity is calculated.

In the case where the coefficients of the equations cannot be expressed
by a single relation for the entire rocket, the Eq. (3.3) must be split up
into two parts, the contact conditions being used.

The case of the Eq. (2.14) is similar. We shall describe in brief the solu-
tion method of the Eq. (2.14).

With a certain change of the contact conditions it will be preserved
in the case of necessity of splitting up the equation (3.3) into two.

Assuming (3.1) and rearranging, the Eq. (2.14) cane be written thus

XV+ay(x) X" +ap(x) X" +a3(x) X' +a, (x) X
= [by X (xp)+ba X(x0)]0 (x—xp)  (3.29)
This equation will be split up into two
XV ta () X" +ay(x) X" +ag(x) X' +ay (%) X y<z, = 0
X1 b () X1 +by (X)) X1 +b5(x1) X154 (X)) Xyymy, = 0 (3.30)
where
x, =1—x.
The boundary conditions are
X'0)=X"(0)=0; X;(0)=X;"0)=0 (3.31)
[ETX" ), HETX 1 Ytz = D1 X (30) D[ X Ly,
[EJX”]xzxa == [EJ i’]x1=14x.
[X']x=x. +[X;.]x;:l—x, = 0
X(xo) = X;(I—xo) (3.32)
If, according to the above method, the equations (3.30) are reduced, each
one in its own coordinate system, to Volterra integral equations, the
method of initial parameters being used, two parameters 4 and B (accord-

ing to notations analogous to (3.6)) will remain undetermined in the
equation for x after using the conditions (3.31), as well as the parameters
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A, and B, in the equation for x;. Solving both Volterra equations and
rearranging in relation to 4, B, A,, B,, we can obtain the characteristic
determinant, on the basis of the conditions (3.32). Then, the solution
is continued as before. In the case where the coefficients in the Eq. (3.3)
have different expressions in different parts of the fuselage, the solution
is analogous, except that b, and b, in the boundary conditions (3.32)
should be made zero.

The above solution is a general theoretical solution of the problem and
enables us to obtain approximate solutions with any degree of accuracy.
However, in practical computations it requires a considerable labour
and is useful only if high speed computers are available.

Much simpler solutions, although without the possibility of appraisal
of the accuracy of results, may be obtained by means of the approximate
method to be considered below.

4. Approximate Method

The approximate method for solving the Eq. (2.9) is based on the modi-
fied Galerkin method.
The solution is assumed in the form

Yy =ay@yota )y, + ... +a,(Dy, (4.1)
where
a; (1) — are functions of time not yet determined
i=0l1,..,n
Yo=1 — characterises the rigid displacement of the rocket
n = (x—x.) — characterises the rigid rotation of the rocket
about the gravity centre x,
yi(x) — eigenfunctions of vibration for the rocket treated

F=23, it as a free beam with boundary conditions
Y =y"0)=y"()=y")=0
where y, is the first harmonic.

The equation of free vibration of a beam
0? 2y, " 5
ox2 EJ axQ‘ ey “A(x)Q (x)(umym (4'2)
=0, it
enables us to determine the eigenvalues w,,.
The eigenfunctions satisfy the orthogonality condition

=0 i#j

#£0 i=j,i,j=0,1,..,n, G

[ A®e*x)yiy;dx
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Substituting (4.1) in (2.14) and using (4.2) we obtain, the damping being
disregarded for simplicity,

Ao*[ay 03y, +az0iys+...+a,mry,] = —A(go+0*) (ay' yot+

+a'ni+ .. +a' y)—20,UA(apyo+aryi+ ... +apy)+

9 tr re rr dA ’ r
— 00 AU oy +a )i+ .. +a,y, )_QOUE (Qoyotaiy +

7 a2 dA ’ ’ ’
+ o AP —0U g @YYt o a3, (44)

The prime denoting the time derivative of g;(f) or x — derivative of y.

Let us apply to the Eq. (4.4) the modified Galerkin’s orthogonality
condition. Multiplying (4.4) by each succesive y; (i = 0,1,...,n), integrating
from O to / and remembering that the integral of the Dirac function
multiplied by a given function gives its particular values, we obtain, use
being made of the orthogonality of the eigenfunctions (4.3), the fol-
lowing system of equations.

0= —ay'co— 20 [duj‘i“az(yj'yo)xﬂx.,+aa(y;‘yo)x=x.,]a}'_ 2 [U(eo;+80p) +
=

J=0

+‘11(J’jJ’0)x=xo+aq(y}Yo)x=xu]a;‘* Z [Ua(ﬁ)j+lluj)+a3(y}yﬂ)x=x]aj,
i=o

0=—ay¢c,— 2 [d1j+a2(yjy1)x=xa+a5(y,;y1)x=xn a}'— 21 [U(ey+g1)+

i=0 j=0

+al (yjyl)x - Xn+a4(y} yl)x = Xn]a} e 2 [U2(f1j+hlj)+a3(y}yl)x = xn] a.i ’
ji=0

n
aywic, = —a;'c2— 2, [d2j+a2(yjy2)x=xu+
i=o

+ aa(y}yz)x = Iu]a_’f'_ JEG [U(ezj+gej)+al(yjy2)x = xa+a4(y_'fy2)x = x-]a;'_

— 2 (U2 (fojt+hep) +-as(yiya)s = x4,

=0

aﬂwlzlcll = *a;’cn - Z [dnj+a2(yjyn)x=x.+
0

J=

T a5V = xdai — D) [U(enjt8n) (¥ V0)x =zt (VjVa)s = z)a; +
i=o

= 3 10t )+ a3 - 2 o 4.5)
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where
I

¢ i= J Ap*y? dx
0
1

dj =0 fAYEYj dx
0
1

i 290]—4”;’3’} dx
0

1
Sy = 2o fAy,-y}’dx
0
1
dA
8ij = 0o H}’i}’; dx

0

1
dA s
hij =00 'Hyiyj dx (4.6)
1]

The solution of the Eq. (4.5.) is sought in the form
a, — B, @.7)
then, we obtain from (4.5)
O = —2*{coBy+ Z [dﬂj+a2(yjy0)x=xn+a5(y}y0)x=x¢]Bj}_A 2 [Uleo;+

=0 j=0

n

+gﬂj)+a1(yjy(})x=x,+a4(y_;‘yﬂ)x=xn]Bj - E[Uz(ﬁ)j+h0j)+aa(y_}y{})x=x.]8j,

i=0

0= _’12{‘71 B+ N [d1j+a2(yjyl)x=xn -*“5(.1’})’1)x:x,]Bj}ﬁﬂ- Z [U(elj‘]'
j=0 j=0

+glj)+a1(yjyl)x:x. +a4(}'_’;’yl)x:x.]Bj_ Z[U2(,f1j+h1j)+a3(y}y1)x=x,]Bj
J=0
(4.8)
Bywic, = —22{0232+ 2 [d2j+a2(yj}'2)x=x.+
j=0

+‘15()’}J’2)x=x.]B}—A 2"‘ [U(¢2j+82j) +a1(J’jy2)x=x, +a4(}’;'J’2)x=x.]Bj+
=)

J

= 2": [Uz(feJ' +h2j)+a3(y}y!)x=x.]B!
=0

J
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Buwte, = —2{c, Byt N [y aa(3s ) ems, +

j=0

() Pemr B =2 3 [U(er; 80D+ (313 mrs + 0D P, 1B+

i=0

— N[Ufostha) sV )en B, (48)
j=0
Assuming an appropriate finite number of terms n = 3 (for a given degree
of accuracy) and solving the system (4.8) for B;(j = 0, 1, ..., n) the charac-
teristic equation of the 2n-th order enabling the determination of the
value of the roots in function of velocity is obtained.
The last value of velocity with ReA changing sign from negative to posi-
tive is the flutter velocity.

5. Examples

Two numerical examples will be given below. The first—for a deform-
able rocket with tail, the other—for a two-stage rocket with tail, com-
posed of two rigid parts connected elastically. In both cases the flutter velo-
city is found. The approximate method of §4 is used, with the purpose of
showing the order of magnitude of the flutter velocities.

The accurate solution can also be obtained, of course. It requires a con-
siderable labour, however. The verification of the approximate method
by means of the accurate method will be done separately.

m
7/ ]
r=0375 m =const. AAb(x)
: 1 .
™ X
uy
- (,=10m
L=12m
[ =
Fic. 2.

Example 1—Assuming the type of the rocket as shown at Fig. 2 the fol-
lowing numerical data are assumed

r =0375 m

A = const = zr?

oo = 0.1 kG sec?/m*
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o* = 100 kG sec?/m*

EJ = 3-10° kGm?

I =12 m (5.1)
For the simplified equation (4.2) the eigenfunctions have the form

sink;/—shk;l g o
yi(x) = m?oaﬁ(coskix—}—chki_\)q—smk,-x+shk,~x (3.2)

where k.l = 4.73; k,l = 7.853.

Assuming for simplicity that x, = /

and taking » = 3 we obtain, after some computation, the following value
of critical velocity

U, = 1945 m/sec (5.3)

Example 2—The rocket under consideration is a two-stage rocket com-
posed of two rigid stages elastically connected, the coefficient of elastic
joint being K. The numerical data will be those of the Example 1. The
notations and the scheme of the rocket are shown at Fig. 3.

Zm
Im

r=0375m =const. “ ﬁ)

l;=6m [=6m

:

!

FiG. 3.

The equations of vibration take, by the Eq. (3.14), the form

2

[4‘ ) u_} ﬁ ;+~ If I kll oy !2 —al a u+
Hot— @)Y |2 — )Y oy P THIG 1T |y % Rea s P

@t ly—ayl,—ay) pat+- (0, UPA—az) g, = 0
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12 " l ’ 13 e 13 re
e +"1*21*J’ +"2‘3%‘?’1 +xz*31’ o1 HK—o,U2AL) g, +kp, =0
L L. 2l oo plily 5
"2‘5’1 Y+ yt ;22"’-2?‘1 _"121 p—ke+
BB 11 n o,
+ xz(‘—6—l- — 32) @2+ -"'5172 Pa+(UAL—K) p, =0
where
# = 20,UA, 2, = (p,+0%) A (5.4)

The accurate solution of the characteristic equation for the system of
equations (5.4) gives, under the assumption

K =1-10°kGm
the following critical value of velocity U, = 998 m/sec.

For other rigidities K the flutter velocity varies proportionally to } K.
If K — oo, there is no critical velocity.

6. Conclusion

Solutions based on approximate methods for integrating the equations
of the problem are presented. These methods do not enable accurate
appraisal of the error. This may be obtained by means of the general
solution method described in §3. Examples verifying approximate solu-
tions are not given in the present paper and will be the object of sepa-
rate considerations.

It should be stated, in addition, that the aerodynamic part of the prob-
lem is treated with a far going simplification. In the next stage of the
work this problem will be dealt with in greater detail, in particular from
the viewpoint of non-linear effects, interference between the fuselage
and the tail and nonsteady state flow.

The next problem suggested by the present considerations is that of
composite types of rocket vibration that is flexural- longitudinal- torsional
vibration and a motion along a curvilinear path.
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